Peeter Vassiljev: tuumajaama asemel vajame akujaama
2030. aasta väljakutseks ei saa mitte see: “kust me põlevkivi asemel üldse elektrit saama hakkame”, vaid hoopis: “mida me teeme soodsa ilmaga toodetud elektri ülejäägiga ja kust saame voolu pimedas ja tuulevaikuses”. Vajame energia akumuleerimise võimekust, kirjutab Peeter Vassiljev.
Rohkem kui aasta jooksul on Eestis intensiivsemalt arutletud tuumareaktoritest, seda eelkõige lahenduste pakkumise võtmes. Saaksime kliimaneutraalsema energeetika, tagaksime energiasõltumatuse, ergutaksime ehitussektori kaudu majandust, ja see kõik oleks hästi-hästi turvaline, sest kasutame uudseimat tehnoloogiat.
Alustati jutuga sulasoolreaktoritest(1) ning kiideti automaatset ohutust, mis tuleneb ahelreaktsiooni kontrollitavusest ja iseeneslikust katkemisest, kui midagi peaks valesti minema.
Mõne aja pärast tulid aga koostöölepped ka vee baasil töötavate reaktorite arendajatega(2) ning seekord öeldi, et hästi läbiproovitud tehnoloogiat on täiustatud, õnnetustest on õpitud, nüüd teeme väiksemad ja peidame maa alla(3). Praeguseks on arutelus petlik vaikehekt möödas ning eriplaneeringu algatamise soov lauale pandud(4).
Risk on kaduvväike, kuid võimalik mõju kohutav
Tõesti, reaktorid ei eralda atmosfääri CO2-e, kuid nende töö käigus tekib jäätmeid, mille lekkel keskkonda on regionaalselt palju tõsisemad tagajärjed.
Nendele tahangi tähelepanu pöörata, sest tuumajäätmete teke on vältimatu ka neljanda põlvkonna reaktorites. Olenemata sellest, kas reaktoris on kütuseks uraan, toorium või plutoonium ning soojusvahetiks gaas, vesi või sool, ikkagi on kasuliku ahelreaktsiooni jaoks vajalik raske tuuma lõhustamine. Laguproduktideks on peamiselt ksenooni ja joodi isotoobid, tseesium-137, strontsium-90.
Tavalises reaktoris need isotoobid kuhjuvad ning omakorda nende radioaktiivse lagunemise energia võib anda kuni kaheksa protsenti kogu reaktori võimsusest. See on lisaenergia, mille vabanemist kontrollvarraste abil peatada ei saa. Seega, ükskõik kui kindel on reaktori põhikütusel toimuva töö seiskamise või pidurdamise võimalus, juba tekkinud kergemate isotoopide probleem jääb.
Mida need laguproduktid siis teevad? Kiirelt poolestuvate ksenooni ja joodi isotoopide vältimine on üldiselt võimalik, aga lekkinud strontsiumi ja tseesiumi me vältida ei saa – see jääb keskkonda ootama. Põlvkondadeks.
Vees hõlpsalt lahustuvat tseesiumi kasutab keha väga sarnaselt kaaliumile, see ladestub pehmetes kudedes, poolestusaeg 30 aastat. Strontsiumi kasutab keha sarnaselt kaltsiumile – luukudede ehituseks, poolestusaeg on 29 aastat. Poolestusaeg 30 aastat ei tähenda, et selle järel oht möödas on – pool isotoobi kogusest on ju alles jäänud.
Kui jätta jääkproduktid reaktorisse, toimub selle kesta võimalikul avariilisel purunemisel leke. Kui tekib soov jääkproduktid eemaldada (soolreaktori puhul on see soovitav), on selleks vaja keemilist töötlemist ning oht lekkeks endiselt olemas.
Jäätmete kogus on suur, olles otseses seoses kavandatud võimsusega (meil on räägitud 300 megavatist, Tšornobõlis oli 1000) ning käitlusajaga.
Tähelepanelik kaasamõtleja võib nüüd arvata, et lekke ulatus ei saa olla suur, sest puudub plahvatus – soolareaktor töötab ju madalal rõhul ning ahelreaktsioon pidurdub temperatuuri tõustes ise.
Kuid mis juhtub siis, kui avarii korral saavad kokku 400-kraadine sool ning vesi jahutusahelast, põhjaveest või sademetest? Ja leke ei pruugi toimuda plahvatuslikult atmosfääri, vaid aeglaselt põhjavette ning sealt merre.
Ka tavapärasema vesijahutusega reaktori maa alla peitmisel plahvatus atmosfääri paiskuda ei saaks, kuid tseesiumi leke põhjavette oleks ikkagi väga võimalik. Muide, Fukushima radioaktiivsete isotoopide leke põhjavette on pea kümme aastat hiljem jätkuvalt oluline reostusallikas.
On saatuse iroonia, et Tšornobõli katastroofi põhjustas soov tõsta reaktori ohutust. Fukushimas oldi aga veendunud, et kõik ongi juba turvaline. Ja siis juhtub midagi enneolematut. Ühel juhul ei saadud aru, et ahelreaktsioon on ebahariliku kasutusrežiimi tõttu ajutiselt summutatud, teisel puhul unustati, et edukalt seiskunud reaktorit jahutavad pumbad vajavad laguproduktidest tekkiva soojuse tõttu katkematult voolu pikema aja jooksul.”Õnnetusi ikka juhtub, olgu põhjuseks inimfaktor, looduskatastroof või terrorism.”
Pikk nimekiri õnnetustest(5) vihjab, et ligi 75-aastase tuuma-ajaloo jooksul ei ole me suutnud õppust võtta. Õnnetusi ikka juhtub, olgu põhjuseks inimfaktor, looduskatastroof või terrorism.
Risk on muidugi kaduvväike, kuid võimalik mõju kohutav. Tšornobõli ja Fukushima õnnetustes tuli evakueerida suured alad ning põhiline saasteaine pole tuumakütus ise, vaid seesama tseesium-137 ja strontsium-90.
Mõlemal juhul oli esialgne keeluala raadiusega ligikaudu 30 kilomeetrit, mida hiljem veel ulatuslikumaks, kuid lapiliseks tehtud on. 60 kilomeetrise diameetriga piirkond riigist. Kujutage ette sellist ringi Eesti kaardil. Kas oleme valmis kiirustades maha jätma suure tüki Eestit, loobuma meres ujumisest ja kalapüügist ning surkima dosimeetriga igat kaalikat, mida maal vanaema juures kasvatame?
Jaapanil, Ukrainal ja Valgevenel oli ruumi, kuhu ümberasujad paigutada, aga kuhu meie evakueeruda saaksime? Kas olete valmis kolima Lätti? Venemaale? Olen kindel, et sõbralikud naabervabariigid kõigile Aafrikast ja Aasiast pärit pagulastele lisaks (andestage mu sarkasm) meidki avasüli vastu võtavad… Nagu Teise maailmasõja järel näiteks Kanada ja Austraalia. Ainult et kas me sedaviisi maata rahvana ka eestlasteks jääme?
Akujaamad ehk vingumise asemel lahendustest
Eestis on jõudsalt arenemas tuule- ja päikeseenergeetika. Viimane suurem päikesejaamade alampakkumine pakuti kolmekordselt üle(6). Ka hoonete energiatõhususnõuded lükkavad üha enam omanikke päikesepaneele juurutama, sest liginullenergia arvutus on vaja ju kuidagi tasakaalu viia. Tahame või mitte, suur hulk päikesepaneele on meie võrku liitumas.
Energiatootmise seisukohast lahendab tuumajaam ainult baaskoormuse, äkiliste võimsusvajaduse kõikumiste rahuldamiseks ei sobi see samuti. 2030. aasta väljakutseks ei saa mitte see: “kust me põlevkivi asemel üldse elektrit saama hakkame”, vaid hoopis: “mida me teeme soodsa ilmaga toodetud elektri ülejäägiga ja kust saame voolu pimedas ja tuulevaikuses”. Vajame energia akumuleerimise võimekust.
Hüdro-pumpjaamasid saab Eestis rajada mõnedes kohtades, loodan siiralt, et Pakri ning Estonia kaevanduse jaamal kõik õnnestub. Sellele lisaks on võimalik rakendada ka veeldatud õhu akumulaatoreid(7), mille saab paigaldada suhteliselt suvalisse kohta. Näiteks brittide Highview Power ehitab 400 MWh mahutavusega jaama Vermontis(8). Toota saab ka vesinikku ning põletada seda talvel koostootmisjaamades.
Ida-Virumaal on nii ruumi kui ka töökäsi ning lahendusi on vaja kiiresti(9). Pole vaja oodata 2035. aastat – akujaamad võivad saada valmis enne Rail Balticut. Loomulikult need jaamad maksavad, kuid tuumajaam maksab samuti. Maksab selle rajamine ja käitlus, aga ka sulgemine 50 aasta pärast (ja sellest viimasest osast ju praegu vaikitakse).
Nii investori kui ka energia jaotuskindluse seisukohast tundub turvalisem riskide hajutamine mitme objekti vahel. Loodan, et me ei võta endale järgmiseks sajaks aastaks riskantsel tehnoloogial põhinevaid hullumeelseid kohustusi ning õpime leplikumalt vaatama tuulikute püstitamisele ning päiksepaneelide ilmumisele tänavapilti(10).
Artikkel on avaldatud 19.02 ERR-is. Foto: Peeter Vassiljev Autor/allikas: Erakogu ERR.